

New construction $3^{\text {rd }}$ tube Tunnel Gubrist, Zurich, Switzerland

The construction of the $3^{\text {rd }}$ tube Tunnel Gubrist is the centrepiece of the expansion of the northern bypass in Zurich.

Scope

- The new construction of the $3^{\text {rd }}$ tube Tunnel Gubrist has a total length of 3.3 km . Of these, 3 '010m will be created as a mining tunnel and about 300 m as a cut-and-cover tunnel
■ On the side Weiningen joins the portal to a 100 m long overlap
- The tunnel is connected to the existing second tube with 12 cross-sections (accessible and passable)
- The lining is double-shell with drained partial seal (umbrella seal)
- 3 operating centers are planned, one of which will be built underground around the lay-by
- 2 central ventilation units with smoke exhaust system at the portals Affoltern and Weiningen
- The execution is carried out by blast heading

Amberg Services
■ SIA project phases 32 to 53 (Preliminary design to commissioning)

- Overall responsible project manager, project manager of sub-projects and site supervision
- Planning \& Design of all underground structures
- Within JV, planning \& design and coordination of the sub-projects tunnel, cut-and-cover / construction pit, installation sites / loading bay, Cover Weiningen.
- Application of departments of the Federal Roads Office ASTRA: tunnel/geotechnics, engineering structure, alignment/environment, operating and safety equipment/installations
- Ventilation Design, Geology from tender design
- Coordination of interfaces with adjacent subprojects (lots 1,3,4)
- Coordination with further consultants (Fit-out, Environment, Traffic, Architects)
- Coordination with Operations, city and canton of Zurich, municipalities, AXPO and SBB

- Situation $3^{\text {rd }}$ tube

- Geological longitudinal section

■ Normal profile blast heading ($178 \mathrm{~m}^{2}$)

AMBERG FACTS

Contracted value JV

■ CHF 16.7 Mio.

Contracted value Amberg

- CHF 10 Mio.

Project phases \& Duration

- Project planning \& design
since 2005
- Execution of the project

2016-2022

Project details

- 3km mined tunnel,

Horseshoe with rounded invert cross-section width 15.34 m , height 14.48 m .
excavated cross-section $178 \mathrm{~m}^{2}$

- Cut-and-cover tunnel Affoltern ($\mathrm{I}=77 \mathrm{~m}$)
- Cut-and-cover tunnel Weiningen $(\mathrm{I}=223 \mathrm{~m}+100 \mathrm{~m})$
- Operating and ventilation centres at the portals
- 4 vehicle accessible cross-passage $\left(40 \mathrm{~m}^{2}\right)$ with access to the service tunnel
- 8 person-accessible cross-passages ($15 \mathrm{~m}^{2}$)
- 1 cross-passage on service tunnel level
- 26 SOS- and hydrant niches (mined)
- Underground operations centre ($5^{\prime} 000 \mathrm{~m}^{3}$)
- 62 m long landing bay with impact protection
- Extinguishing water supply with connection to existing system
- Separation system for mountain, meteor and wastewater
- Deep excavations at both portals ($1533^{\prime} 000 m^{3}$ fixed)
- Cut \& Cover method
- Muck removal railway station for 600'000 solid-m³
- Site installation areas in Affoltern and Weiningen
- Utility relocation works
(natural gas, 110 kV overhead line, etc.)
- Three-lane auxiliary bridge in Affoltern as a temporary replacement of a key road and measures for traffic diversion

CLIENT FACTS

Overall costs

■ Total CHF 565 Mio. (base: April 2006)

Project overview

- The construction of the new $3^{\text {rd }}$ tube Tunnel Gubrist has a total length of 3.3 km . Ca. 3 ' 000 m mined and ca. 300 m as a cut-and-cover.
- On the side of Weiningen a 100 m cover slab connects to the portal structure
- The new tunnel is connected to the existing $2^{\text {nd }}$ tube by 12 no. accessible cross passages (vehicle and person accessible)
- The lining is a double shell with umbrella water proofing membrane (drained)
- 3 operating centers, one constructed underground.
- 2 ventilation centres with smoke exhaust structures at the portals Affoltern and Weiningen
- Excavation by means of drill \& blast

Geology

■ Upper freshwater molasse (alternating storage of sand / siltstone and marl), horizontal stratification

- The two entry cuts are partly in the molasse and are covered with soft-ground layers, which consist on the valley sides of moraines and gravel as well as from hang deposits
- Low mountain water resources
- In the area of the mining tunnel, the coverage varies between 8 m and 200 m . The height difference between both portals is about 40 m

Contact person

Mr. Ulrich Weidmann, Overall project manager FEDRO Federal Roads Office
Branch Winterthur, Switzerland
Tel.: +41584804741
eMail: ulrich.weidmann@astra.admin.ch

ENGINEERING

CHALLENGES

- Up to and including tender design (SIA 32-41) the project is planned \& designed with the TBM-S excavation method ($\varnothing 15.7 \mathrm{~m}$) with segmental lining conventional excavation with drill \& blast and a machine-assisted excavation with pilot tunnel (Ø5.0m)
- The tunnel lining consists of an outer steel fibre sprayed concrete lining, rock bolts, umbrella waterproofing membrane and an unreinforced insitu concrete secondary lining
- Planning \& Design services are carried out in compliance with current standards, safety standards and ASTRA specifications regarding operation and safety
- Application of the ASTRA areas of tunnel/geology, tunnel/environment and engineering structures
- Project in focus of the public, politics and environmental organizations
- Construction under operation (the two neighbouring tunnels remain in operation during the entire construction period)
- Extensive traffic planning
- Portal Weiningen in the middle of a residential area.
- Considerations of vibrations, noise and structureborne noise around the existing facility and in the residential area
- Integration of noise protection measures at the portals
- Complex construction site logistics and stringent requirements on material management (railbound muck handling facility)
- Extensive earthworks and concrete work
- The development of the northern bypass carried out in vicinity of moor biotopes
- Conducting drill \& blast trials
- Evaluation of swelling tests (marl)
- Modelling execution design in 3D (BIM)

ENGINEERING APPROACH

Driven portal side Affoltern

Main drive Affoltern

■ The main excavation face of the mined tunnel is commenced from Affoltern

- The excavation is carried out with a heading advance, followed with bench and invert.
- Drill \& Blast excavation method
- Machine-aided excavation in rock

Dismantling bench using a rock cutter

TECHNICAL SOLUTIONS

Driver portal side Weiningen

Support measures

- The tunnel advance of the mined tunnel in Weinigen heads into the opposite direction challenged with low overburden.
■ In order to minimize settlement in the urbanised area, five (5) pipe umbrella advances ($\mathrm{I}=15 \mathrm{~m}$) with subsequent spiles ($\mathrm{I}=30 \mathrm{~m}$) were constructed.

Installation pipe screen

CHALLENGES

■ Modelled situation

- New traffic regime

- Execution lid construction Weiningen

ENGINEERING APPROACH

- Underground operations centre, 3D model (BIM)

- Combined SOS and hydrant niches

- Loading station, material management

TECHNICAL SOLUTIONS

- Normal profile (TBM-drive)

Service tunnel elements (WLK)

- Overview of operating and ventilation centres

