FÖRBIFART – STOCKHOLM BYPASS

Förbifart

Stockholm Bypass, Sweden

21 km long highway as western bypass of Stockholm

Scope

- 17.3 km of tunnels
- 2 tunnel tubes with 3 lanes each
- 3 complete subsurface junctions
- Cross passages every 150 m
- Ventilation shafts
- Subsurface ventilation centre

Challenges

- Hard Scandinavian base rock with covering moraines and soft clay deposits, sensitive to settling
- Large cross-sections, complex geometry in the area of the junctions
- Stringent requirements for the suspended ceiling, in particular in case for the fire loads
- Low coverage in urban area including the under passing of main roads and utilities
- BIM (Building Information Modelling) Project

Amberg Services

- Consulting for special problems
- Review of the construction project
- Establishment of tender documents
- Establishment of main project
- Client representation at site

Deformations expected at Lövstavägen main road

Modelling of difficult geometry

Modelling of crossing structure

AMBERG FACTS

Contracted value Amberg

■ Total 3.0 Mio. € (Amberg as subcontractor of AF infrastructure)

2011

2015

Project Phases & Duration

- Preparation works started
 - Project realization started
- Project completion expected 2021

Project Details

- Planning of heading, reinforcement and lining of under passing of Lövstavägen by means of jet grouting and pipe umbrella. Lower half of profile in Granite/Gneiss, upper half in soft soil
- Development of the project for all areas with low coverage of base rock
- Design and tendering of the suspended ceiling, which defines the driving space and serves as protection against penetrating water in case of fire
- Planning of the ventilation centre in an subsurface cavern, including all concrete works
- Design of the ventilation shafts including lining with cast concrete
- Planning and tendering of the access galleries including verification of required areas for installation of infrastructure
- Client representation at site and review of the design basis in relation to the construction progress

CLIENT FACTS

Overall costs

■ Total 3.2 billion €

Overview Project

- 21 km long bypass motorway
- 2 tunnel tubes, 3 lanes each, total 17 km
- Access and ramp tunnels
- All tunnels in urban area

Geology

- Bedrock, competent granite
- Above rock surface, covering ground consisting of made ground, soft clay layer and water bearing moraines

Contact person

AF Consult. Stockholm Mrs Malin Hubertsson Project Manager Phone: +46 73 412 62 70 E-Mail: malin.hubertsson@afconsult.com

Trafikverket, Solna Mrs Beatrice Lindström **Project Manager** Phone: +46 70 245 22 37 E-Mail: beatrice.lindstrom@trafikverket.se

CHALLENGES

High pressure injections - under passing Lövstavägen

Jet Grouting in the Area at Lövstavägen Passage

- A Grouting test field has been established for verification of the HDI concept
- Special measures for drilling in areas with utilities (cable ducts, tubes etc.)

Lövstavägen passage grouting

- Total grouted area 1100 m²
- 1070 grouting columns, diam. 1.5 m
- Dense equilateral- triangular grid
- Total grouted length 3600 m
- Total grouted volume 3300 m³

ENGINEERING APPROACH

Pipe umbrella at low rock coverage

Pipe Roof Umbrella Ahead of Tunnel Face below Lövstavägen Passage

Dense pipe roof umbrella to increase stability before excavation

Lövstavägen pipe roof umbrella

- Diameter 114 mm
- Spacing 33 cm
- Length 15 m, overlap 3 m
- Inclination 4° offset from tunnel axis
- Installation from 10 2 o'clock

TECHNICAL SOLUTIONS

Numerical analysis for design verification

Verification of Design Concept by Means of Numerical Analysis (FLAC 2D)

- Model calculations (finite difference) incorporating rock parameters and improvements of stability (grouting, pipe umbrella, cast in place lining)
- Examine ground response due to excavation
- Assess deformations around tunnel/on surface
- Obtain lining loads, verification of lining
- Verification of overall tunnel stability

Modelling Stages

- Application of primary stress state
- Tunnel relaxation (load reduction method)
- Simulation of pipe roof umbrella by means of increase of ground cohesion
- Installation of temporary lining (shotcrete, rock bolts)
- Final tunnel excavation with full ground relaxation)

